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Abstract. A method to determine the running of α from a measurement of small angle Bhabha scattering
is proposed and worked out. The method is suited to high statistics experiments at e+e−-colliders which
are equipped with luminometers in the appropriate angular region. A new simulation code predicting small
angle Bhabha scattering is also presented.

1 Introduction

The electroweak standard model SU(2)⊗U(1) contains as
a constitutive part quantum electrodynamics (QED). The
running of the electromagnetic coupling α is determined
by the theory:

α(q2) =
α(0)

1 − ∆α(q2)
, (1)

where α(0) = α0 is the Sommerfeld fine structure constant,
which has been measured to a precision of 3.7 · 10−9 [1]. A
positive ∆α(q2) arises from loop contributions to the pho-
ton propagator. The numerical prediction of electroweak
observables involves the knowledge of α(q2), usually for
q2 �= 0. For instance, the knowledge of α(m2

Z) is relevant
for the evaluation of quantities measured by the LEP ex-
periments. This is achieved by evolving α from q2 = 0 up to
the Z mass scale q2 = m2

Z . The evolution expressed by the
quantity ∆α receives contributions from leptons, hadrons
and the gauge bosons. The hadronic contribution to the
vacuum polarisation, which cannot be calculated from first
principles, is estimated with the help of a dispersion inte-
gral and evaluated [2] by using total cross section measure-
ments of e+e− → hadrons at low energies. Therefore, any
evolved value α(q2), particularly for |q2| > 4m2

π, is affected
by uncertainties originating from hadronic contributions.
The uncertainty on α(m2

Z)−1 induced by these data is
as small as ±0.09 [2]; nevertheless it turned out [3] that
it limits the accurate prediction of electroweak quantities
within the standard model, particularly for the prediction
of the Higgs mass.

a Permanent address: Dipartimento di Fisica, Univer-
sità di Parma and INFN, Gruppo Collegato di Parma,
43100 Parma, Italy

While waiting for improved measurements from BEPC,
VEPP-4M and DAFNE as input to the dispersion inte-
gral, intense efforts are made to improve on estimating the
hadronic shift ∆αhad, as for instance in [4–7], and to find
alternative ways of measuring α itself. Attempts have been
made to measure α(q2) directly using e+e−-data at various
energies, such as measuring the ratio of e+e−γ/e+e− [8] or
more directly the angular distribution of Bhabha scatte-
ring [9].

In this article the running of α is studied using small
angle Bhabha scattering. This process provides unique in-
formation on the QED coupling constant α at low spacelike
momentum transfer t = −|q2|, where

t = −1
2

s (1 − cos θ) (2)

is related to the total invariant energy
√

s and the scatte-
ring angle θ of the final state electron. The small angle
region has the virtue of giving access to values of α(t)
without being affected by weak contributions. The cross
section can be theoretically calculated with a precision
at the per mille level. It is dominated by the photonic t-
channel exchange, and the non-QED contributions have
been computed [10] and are on the order of 10−4 (see
Table 1); in particular contributions from boxes with two
weak bosons are safely negligible.

In general, the Bhabha cross section is computed (see
Sect. 3) from the entire set of gauge invariant amplitudes
in both the s- and the t-channel. Consequently, two in-
variant scales s and t govern the process. The different
amplitudes are functions of both s and t and also the QED
coupling α appears as α(s) respectively α(t) [11]. How-
ever, the restriction of Bhabha scattering to the kinematic
regime of small angles results in a considerable simplifi-
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Fig. 1. ∆α versus
√−t in units of GeV in the spacelike region

cation, since then the s-channel contribution gives only a
negligible contribution, as is quantitatively demonstrated
in Table 1. Thus, the measurement of the angular distribu-
tion allows one indeed to verify directly the running of the
coupling α(t). For the actual calculations θ � me/Ebeam
and Ebeam � me must be satisfied (see Sect. 4.1). Obvi-
ously, in order to manifest the running, the experimental
precision must be adequate.

This idea can be realized by high statistics experiments
at e+e−-colliders equipped with finely segmented lumi-
nometers, in particular by the LEP experiments given their
large event samples, by SLC, and future Linear Colliders.
The relevant luminometers cover the t-range from a few
GeV2 to order 100 GeV2.

The t-dependence of the quantity ∆α(t), (1) and (2),
at small values of t is illustrated in Fig. 1.

It shows the predicted running of α in the relevant
spacelike region. The figure is obtained using the program
alphaQED by Jegerlehner [2]. At low energies (see Fig. 2)
∆α is dominated by the contribution from the leptons,
while with increasing energy also the contribution involv-
ing hadrons gets relevant. The region where hadronic cor-
rections are critical is contained in the considered t-range.

2 The method

The experimental determination of the angular distribu-
tion of the Bhabha cross section requires the precise de-
finition of a Bhabha event in the detector. The analysis
follows closely the procedure adopted in the luminosity
measurement which is described in detail, for instance,
in [12], and elaborates on the additional aspect related to
the measurement of a differential quantity. To this aim the
luminosity detector must have a sufficiently large angular
acceptance and adequate fine segmentation. The variable
t, see (2), is reconstructed on an event-by-event basis.
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Fig. 2. Contributions to ∆α from leptons (dashed curve) and
hadrons (solid curve) versus

√−t in units of GeV

The method to measure the running of α exploits the
fact that the cross section for the process e+e− → e+e−
can be conveniently decomposed into three factors:

dσ

dt
=

dσ0

dt

(
α(t)
α(0)

)2

(1 + ∆r(t)) (3)

as worked out in Sect. 3. All three factors are predicted to
a precision of 0.1% or better. The first factor on the right
hand side refers to the effective Bhabha Born cross section
including soft and virtual photons according to [10], which
is precisely known, and which accounts for the strongest
dependence on t. The vacuum polarization effect in the
leading photon t-channel exchange is incorporated in the
running of α and gives rise to the squared factor in (3).
The third factor ∆r(t) collects all the remaining real (in
particular collinear) and virtual radiative effects not incor-
porated in the running of α. The experimental data after
correction for detector effects is to be compared with (3).
The t-dependence is rather steep; thus migration effects
may need attention.

This goal is achieved by using a newly developed pro-
gram based on the already existing semi-analytical code
NLLBHA [10,13]. A detailed description of this code, called
SAMBHA, is given in Sect. 4.

3 Theory

It is convenient to confront the fully corrected measured
cross section with the Bhabha cross section including ra-
diative corrections in the factorized form given by (3). The
physical cross section is infrared safe [10]. This decomposi-
tion is neither unique nor dictated by a compelling physical
reason, rather it allows one to separate the different sources
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of t-dependence in a transparent way without introducing
any additional theoretical uncertainty. The various factors
are discussed one by one in the following subsections.

3.1 The cross section dσ0/dt

The differential cross section dσ0/dt is defined by

dσ0

dt
=

dσB

dt

(
α(0)
α(t)

)2

. (4)

The factor dσB/dt is the Bhabha cross section in improved
Born approximation, which, by definition, includes the run-
ning of α. As seen explicitly in the formulae below (see (5))
the factor α(t)/α(0) is not factorized completely in the
improved Born cross section. In order to have the factor-
ized form of (3) nevertheless the t-channel contribution to
the running of α has been taken out. In this way, dσ0/dt
contains not only the usual Born t-dependence, i.e. 1/t,
but also some weaker t-dependences arising from s-channel
amplitudes with vacuum polarization effects taken into ac-
count [10], although numerically small as mentioned above.

The improved Born cross section for Bhabha scatte-
ring within the electroweak standard model is precisely
known [14–16]. The differential cross section dσB/dt differs
from dσ0/dt by the inclusion of those radiative corrections
which affect only the propagator of the exchanged pho-
ton. They form a gauge invariant subset of all radiative
corrections and are shown explicitly. It is convenient to
decompose dσB/dt into the contributions arising from the
t-channel (Bt), the s-channel (Bs) and their interference
(Bi):

dσB

dt
=

πα2
0

2s2 Re {Bt + Bs + Bi} , (5)

where

Bt =
(s

t

)2
{

5 + 2c + c2

(1 − Π(t))2
+ ξ

2(g2
v + g2

a)(5 + 2c + c2)
(1 − Π(t))

+ ξ2 (
4(g2

v + g2
a)2 + (1 + c)2(g4

v + g4
a + 6g2

vg2
a)

)}
,

Bs =
2(1 + c2)

|1 − Π(s)|2

+ 2χ
(1 − c)2(g2

v − g2
a) + (1 + c)2(g2

v + g2
a)

1 − Π(s)

+ χ2 [
(1 − c)2(g2

v − g2
a)2

+ (1 + c)2(g4
v + g4

a + 6g2
vg2

a)
]

,

Bi = 2
s

t
(1 + c)2

{
1

(1 − Π(t))(1 − Π(s))

+(g2
v + g2

a)
(

ξ

1 − Π(s)
+

χ

1 − Π(t)

)
+(g4

v + 6g2
vg2

a + g4
a)ξχ

}
,

χ =
s

s − m2
z + imZΓZ

· 1
sin 2θw

,

ξ =
t

t − m2
Z

· 1
sin 2θw

,

ga = −1
2

, gv = −1
2

+ 2 sin2 θw) ,

t = (p1 − q1)2 = −1
2

s (1 − c) ,

c = cos θ , θ = p̂1q1 .

Here s is the total squared invariant mass, θw the elec-
troweak mixing angle and θ the scattering angle between
the initial and final electron with momenta p1 and q1 re-
spectively [10].

In Table 1 the cross sections are given in nanobarn
for the pure QED and electroweak cases. QEDt denotes
the contribution of the t-channel pure QED Feynman dia-
grams. The cross sections are integrated over two relevant
angular ranges. The table shows that the t-channel pho-
ton exchange dominates the cross section at small angles
and justifies why the process is suited for investigating the
t-dependence, and so the running of α(t).

By comparing the values of the electroweak cross sec-
tion with the pure QED one, it is seen that the Z-boson ex-
change gives a negligible contribution to small angle scatte-
ring. In the last two lines (EW+VPt and EW+VP) there
are numbers for the cross section with vacuum polarization
(VP) taken into account in the t-channel only, and in all
channels, correspondingly. One can see that the effect of
s-channel vacuum polarization is small, as a result of the
smallness of the s-channel photon-exchange contribution
itself. The last line in the table corresponds to the complete
formula in (5).

3.2 The running of α

In (5) the two-point functions Π(t) = ∆α(t) and Π(s) =
∆α(s) are responsible for the running of α in the spacelike
and timelike regions. In the language of Feynman diagrams
the effect arises from fermion loop insertions into the virtual
photon lines. We have

Π(t) =
α0

π

(
δt +

1
3
L − 5

9

)
+

(α0

π

)2
(

1
4

L + ζ(3) − 5
24

)
+

(α0

π

)3
Π(3)(t) + O

(
m2

e

t

)
,

where

L = ln
Q2

m2
e

, Q2 = −t, ζ(3) = 1.202 ,

and where the leading part of the two-loop contribution to
the polarization operator is taken into account. The most
significant part arises from the electrons and is L/3− 5/9.
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Table 1. Various cross sections in nb as a function of the center-of-mass energy in
GeV integrated over the two angular ranges 45–110 mrad and 5–50 mrad. The index
t denotes the contribution of the corresponding t-channel Feynman diagrams alone.
The last columns are of interest for future Linear Colliders
√

s (GeV) 91.187 91.2 189 206 500 1000 3000
45 mrad < θ < 110 mrad√〈−t〉 (GeV) 3.4 3.4 7.1 7.7 18.8 37.5 112.6

QED 51.428 51.413 11.971 10.077 1.7105 0.42763 0.047514
QEDt 51.484 51.469 11.984 10.088 1.7124 0.42809 0.047566
EW 51.436 51.413 11.965 10.072 1.7105 0.42871 0.049507
EW+VPt 54.041 54.018 12.743 10.745 1.8590 0.47303 0.055748
EW+VP 54.036 54.013 12.742 10.744 1.8588 0.47296 0.055742

5 mrad < θ < 50 mrad√〈−t〉 (GeV) 1.1 1.1 2.2 2.4 5.8 11.6 34.8
QED 4963.4 4962.0 1155.4 972.54 165.08 41.271 4.5857
QEDt 4963.5 4962.1 1155.4 972.57 165.09 41.272 4.5858
EW 4963.4 4962.0 1155.4 972.53 165.08 41.272 4.5885
EW+VPt 5075.0 5073.5 1190.6 1003.3 172.51 43.647 4.9603
EW+VP 5075.0 5073.5 1190.6 1003.3 172.51 43.646 4.9605

The O(α) and O(α2) leptonic vacuum polarization has
been known since many years [17]. The third order (three-
loop) leptonic contributions Π(3)(t) have been recently
calculated [18]. In the standard model, δt contains con-
tributions from muons, τ -leptons, W -bosons and hadrons:

δt = δµ
t + δτ

t + δW
t + δH

t ,

δs = δt (t → s) ,

which means that δs is obtained from δt by substituting
s by t [10]. The contributions from the leptons (l = µ, τ)
and from the W are theoretically calculable and given by

δl
t =

1
2

vl

(
1 − 1

3
v2

l

)
ln

vl + 1
vl − 1

+
1
3

v2
l − 8

9
,

vl =

√
1 +

4m2
l

Q2 ,

δW
t =

1
4

vW (v2
W − 4) ln

vW + 1
vW − 1

− 1
2

v2
W +

11
6

,

vW =

√
1 +

4M2
W

Q2 .

For Q2 � m2
l the formula simplifies to

δl
t =

1
3

ln
Q2

m2
l

− 5
9

.

The hadronic contribution cannot be calculated theo-
retically; instead, it can be expressed as a dispersion inte-
gral involving the experimentally measured e+e−-cross sec-
tions:

δhad
t =

Q2

4πα2
0

∞∫
4m2

π

σe+e−→h (s′)
s′ + Q2 ds′ . (6)

For numerical calculations the hadronic contributions as
included in the parametrisation [4, 19] are adopted.

This procedure, as usually assumed (see e.g. [5]) is based
on the analyticity of the function α(q2) in the complex
plane, except possibly at the energies corresponding to the
Landau pole. For the leptonic contributions δe,µ,τ

s,t this as-
sertion is true, while for the hadronic contribution δhad

t

it relies on the dispersion approach to the entire, nonper-
turbative, hadronic physics (see (6)). This ends up in a
single analytical function that can be used to deal with
the vacuum polarization in the t-channel.

3.3 The radiative factor 1+ ∆r(t) and neglected terms

For the present investigation of the small angle Bhabha
cross section consistently only the corrections needed to
maintain the required accuracy are kept. All these correc-
tions are included in the new code SAMBHA. All the fol-
lowing contributions have been proven to be negligible [10]
and are dropped.

(1) Any electroweak effect beyond the tree level, for in-
stance appearing in boxes or vertices with Z0- and
W -bosons, running weak coupling etc.

(2) Box diagrams at order α2 and larger.
(3) Contributions of order α2 without large logarithms,

leading from order α4 (i.e. α4L4,. . .) and subleading
higher order (α3L2, α4L3, . . .)

(4) Contributions from pair produced hadrons, muons,
taus and the corresponding virtual pair corrections to
the vertices (estimated to be on the order of 0.5·10−4).

The radiatively corrected Bhabha cross section is denoted
by dσ/dt. Numerically it differs from dσB/dt by less than
a few percent for small angles depending on energy and
final state selection procedure.
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4 Monte Carlo codes and comparison

The precise determination of the luminosity at e+e−-colli-
ders is a crucial ingredient to get an accurate evaluation of
all the physically relevant cross sections. They necessarily
have to rely on some reference process, which is usually
taken to be the small angle Bhabha scattering. Given the
high statistical precision provided by the LEP collider, an
equally precise knowledge of the theoretical small angle
Bhabha cross section is mandatory. In the 1990s the sub-
stantial progress in measuring the luminosity reached by
the LEP Collaborations has prompted several groups to
make a theoretical effort aiming at a 0.1% accuracy [20,21].
This goal has indeed been achieved by developing a dedi-
cated strategy. For the first time small angle Bhabha scatte-
ring was evaluated analytically following a new calculation
technique [10] yielding the required precision. Analytical
calculations have been combined with Monte Carlo pro-
grams in order to simulate realistically the conditions of
the LEP experiments.

The analytical results evaluated for the various contri-
butions to the observed Bhabha cross section in [10], were
implemented into the semi-analytical code NLLBHA (for
a short write-up see [13]). The important feature of this
code consists in the systematic account of all QED radia-
tive corrections required to reach the per mille precision.
On the other hand, the simulation of realistic experimental
acceptances can only be achieved with Monte Carlo tech-
niques. For this purpose the Monte Carlo code LABSMC
was developed [22–24].

4.1 SAMBHA-NLLBHA

The program LABSMC, which was intended to describe
large angle Bhabha scattering at high energies, has been
complemented with a set of routines from NLLBHA in or-
der to be applicable to small angle Bhabha scattering. This
implied the insertion of the relevant second order next-to-
leading radiative corrections (O(α2L)) in the Monte Carlo
code1 which are crucial to achieve the per mille accuracy.
The extension in order to cover small angles resulted in
the new code SAMBHA containing the previously existing
features together with the following new characteristics:

(1) the complete electroweak matrix element at the Born
level;

(2) the complete set of O(α) QED radiative corrections
(including radiation from amplitudes with Z-boson ex-
change);

(3) vacuum polarization corrections by leptons, hadrons
[19], and W -bosons;

(4) one-loop electroweak radiative corrections and effec-
tive EW couplings by means of the DIZET v.6.30 [25]
package;

(5) higher order leading logarithm photonic corrections by
means of the electron structure functions [26–29];

1 The codes are available upon request from the authors.

(6) light pair corrections in the O(α2L2) leading logarithm
approximation including (optionally) the two-photon
and singlet mechanisms.

The code is applicable with the following restrictions:

(a) Ebeam � me: the energy has to be much larger than
the electron mass;

(b) me/Ebeam � θ: extemely small angles are not de-
scribed well, but the condition is fulfilled in practice
both for small and large angle Bhabha measurements
in the experiments at LEP, SLC and NLC;

(c) starting from the second order in α, real photon emis-
sion is integrated over, i.e. events with two photons
separated from electrons are not generated.

4.2 BHLUMI

The Monte Carlo Program BHLUMI, which has been used
in the LEP analyses, is decribed in detail in [30].

4.3 Comparison BHLUMI and SAMBHA

BHLUMI is compared with SAMBHA for integral and, for
the first time, also differential distributions. The actual
measurements are of calorimetric type. Therefore, event
samples are generated with both programs subjecting each
event to a common set of calorimeter-like criteria (hereafter
called CALO).

In a first test the program codes were applied to the
conditions established by the working group Event gene-
rators for Bhabha scattering [12] (YR) with the result that
all numbers were reproduced within the quoted accuracy.

In a further test, about 108 Bhabha events were ge-
nerated according to the calorimeter-like conditions spe-
cified in Sect. 5.1. This selection rejects a considerable part
of events with real hard photon radiation. Therefore, the
effect of mutual cancellation between virtual and real ra-
diation is suppressed and inevitably causes fairly large t-
dependent radiative corrections. The comparison is made
quantitative in the form of the ratio

ρ(t) =
dσsambha/dt − dσbhlumi/dt

dσbhlumi/dt

and displayed in Fig. 3. A linear logarithmic fit to the cross
section ratios and their statistical uncertainties gives

ρ(t) = −(0.0039 ± 0.0002)

−(0.0046 ± 0.0010) log
−t

〈−t〉 ,

with 〈t〉 = −8.3 GeV2.
The two programs differ significantly in average by

0.4%. At the present level of investigation it cannot be
excluded that there is a weak t-dependence.

It is not so surprising to find a discrepancy for the
differential quantity, while getting good agreement for the
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Table 2. Comparison between the codes NLLBHA(SAMBHA) and BHLUMI. The numbers are obtained
using the conditions of Table 19 in [12]. The relative ratio δr/r in per mille is defined by (YR-NOW)/YR,
The last column gives the relative difference between BHLUMI(NOW) and SAMBHA(NOW)

cut BHLUMI (YR) BHLUMI (NOW) δr/r NLLBHA (YR) NLLBHA (NOW) δr/r

0.1 166.892 166.879 0.07 166.948 166.923 0.14 −0.26
0.3 165.374 165.438 −0.38 165.448 165.420 0.16 0.10
0.5 162.530 162.616 −0.52 162.561 162.25 1.91 2.25
0.7 155.668 155.733 −0.41 155.607 155.40 1.33 2.13
0.9 137.342 137.425 −0.60 137.199 137.32 −0.88 0.76

log(-t)

ρ(
t)

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.6 0.8 1 1.2 1.4 1.6

Fig. 3. Cross section ratio ρ(t) versus log (−t) with t in units
of GeV2

integral quantity. In fact, the key element is the far stronger
restriction in the event selection for the two cases. In the
integral case the events are accepted over the entire angular
range of the luminometer, while for the differential analysis
the same selection criteria are applied to a set of segments
covering eventually the full range of the luminometer. This
implies that an event accepted in the integral case, is not
necessarily accepted in the differential one due to the more
restrictive conditions, such that the sum of events accepted
in the segmented luminometer is smaller than the number
of events in the full luminometer.

For a quantitative understanding of this qualitative ar-
gument a selection of events is presented as a function of
the cut s · xc = s · x1x2, where xi is the fractional energy
carried by the electron (or positron) (see Table 2). Obvi-
ously, a value for xc near 1 selects configurations with small
acollinearity as opposed to cases with smaller xc favoring
larger acollinearity configurations. For a given opening an-
gle, events with large acollinearity are hardly accepted, in
other words the size of the cone opening angle defines the
amount of radiative events containing real emitted photons
accepted or rejected. Consequently a larger or smaller final

state phase space is probed. Since virtual radiative con-
tributions are unaffected by phase space restrictions, the
interplay between real and virtual radiative contributions
strongly depends on the acceptance. The accuracy to which
radiative corrections have to be treated becomes crucial.

With the tight cuts required for the study of a differ-
ential quantity as in the case investigated here, necessarily
fine detailed aspects related to radiative contributions are
probed. Therefore such studies open a new level of com-
parison between theory and experiment.

5 Evaluation of the running in a
simulated experiment

Anticipating the application of the proposed method to
measure the t-dependence of α(t) to the data of a real ex-
periment, a Monte Carlo simulation is carried out instead
in order to demonstrate the feasibility. An event sample
is generated under the conditions of the DELPHI exper-
iment using the existing program BHLUMI. In the next
subsection the sample so obtained is confronted with the
expectation of the new program SAMBHA. It should be
noted that the t-dependence of α(t), i.e. the quantity to be
investigated, is by about an order of magnitude stronger
than the possible differences in the intrinsic t-dependences
between BHLUMI and SAMBHA (see Sect. 4.3).

5.1 Event generation

The DELPHI detector and its performance is described
in [31]. For the analysis the relevant subdetector is the elec-
tromagnetic calorimeter STIC [31] covering the extreme
forward and backward directions. It has a ring structure
with segmentation in both θ and φ covering

√−t-ranges
from 1.5 to 6 GeV for LEP1 energies and 3 to 12 GeV for
LEP2 energies.

Electrons, positrons and photons are observed as clus-
ters. Their reconstruction is based on a cluster algorithm.
The Bhabha events are characterized by two narrow high
energy electromagnetic clusters opposite to each other and
well inside the detector. The cluster algorithm is applied to
the observed energy depositions in the cells of the electro-
magnetic calorimeter. Furthermore, the cluster with the
highest energy satifies the more restrictive requirement to
be at the radial position R between 10 and 25 cm such as
to cause no inefficiency for the opposite cluster.
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Table 3. Table of event numbers generated with BHLUMI.
Ring 1 is not considered

√
s (GeV) 91.2 189 200

∫ Ldt (pb−1) 75 150 200
Ring 2 1844850 863571 1028210
Ring 3 907754 425586 506131
Ring 4 513696 240550 286994
Ring 5 313218 146731 174740
Ring 6 201893 94033 112168

A Monte Carlo simulation has been performed using
BHLUMI for three center-of-mass energies of LEP: 91.2
(Z-peak), 189 and 200 GeV. Assuming integrated luminosi-
ties

∫ Ldt typical for the LEP experiments, the number of
events passing the selection criteria are obtained and listed
in Table 3. An event is attributed to ring i, if the highest
energy cluster is reconstructed in this ring and the criteria
listed below are satisfied.

(1) Cluster reconstruction: The main criterion for merging
adjacent cells is(

∆θ

30 mrad

)2

+
(

∆φ

870 mrad

)2

< 1 ,

where the cluster center is calculated as the energy
weighted cell centers.

(2) Only the highest energy cluster in each hemisphere
(referred to as F (forward) respectively B (backward))
is considered.

(3) Energy requirements:

min(EF, EB) > 0.65Ebeam ,

max(EF, EB) > 0.94Ebeam .

This implies that the Bhabha events have not suffered
from sizeable initial state radiation effects.

(4) Geometrical acceptance: The radial position R of the
two opposite clusters must satisfy

7 cm < RF, RB < 28 cm .

(5) Kinematics: The cluster center and the nominal inter-
action point of the colliding e+e− beams determine
the dip angle θ. The quantity t is calculated from the
dip angle θ and the nominal center-of-mass energy√

s = 2Ebeam according to

t = − 1
2s(1 − cos θmax) ,

where θmax is defined to be the dip angle of the cluster
with the highest energy.

The result of the Monte Carlo experiment is summarized
in Table 3. Ring 1 and ring 7 have been disregarded in
order to exclude any inefficiency from border effects.

5.2 Comparison and evaluation

In this subsection the relevant observables and the para-
meters to be extracted are established and discussed.

Each ring defines with its boundaries a bin (tmin, tmax).
The event numbers are to be equated to the corresponding
theoretical prediction obtained from the formulae imple-
mented in the program SAMBHA. In order to extract the
t-dependence of α(t), (3) is evaluated for each ring Ri de-
fined by the geometry of the DELPHI luminometer. Equa-
tion (3) reads then for ring i

σi = σ0
i

(
α(ti)
α(0)

)2

(1 + ∆ri) , (7)

with the following definitions:

σi =
∫ Ri

dt
dσ

dt
,

σ0
i =

∫ Ri

dt
dσ0

dt
,(

α(ti)
α(0)

)2

=
∫ Ri dt

tmax − tmin

(
α(t)
α(0)

)2

,

1 + ∆ri =
(

α(0)
α(ti)

)2
σi

σ0
i

.

Table 4 contains the resulting theoretical values.
Putting together the experimental and theoretical in-

gredients, i.e. the observed number of events Ni in each
ring together with the relevant luminosities

∫ Ldt (from
Table 3) and σ0

i , ∆ri (from Table 4), one obtains the fi-
nal formula: (

α(ti)
α(0)

)2

=
Ni

σ0
i

∫ Ldt

1
1 + ∆ri

, (8)

which can be exploited in a linear fit to access the para-
meters defining the t-dependence of α:(

α(t)
α(0)

)2

= (u0 ± δu0) + (u1 ± δu1) · log
−t

〈−t〉 . (9)

The parameters of the fit are listed in Table 5.

6 Discussion

Table 5 demonstrates that for the case of the DELPHI setup
(see Sect. 5) and assuming typical integrated luminosities,
the statistical accuracy is sufficient to verify the running
of α for each of the three center-of-mass energies.

Equation (8) can be expanded in terms of ∆α (see (1)).
It is convenient to consider

Ni

σ0
i

1
1 + ∆ri

= n0 + n1 log
−ti
〈−t〉 (10)

rather than (8), since in practice the integrated luminosity∫ Ldt is not known. The two coefficients n0 and n1 are
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Table 4. Theoretical predictions for each ring of the three factors of (7).
For the conditions defined in Sect. 5.1 the angular boundary of ring i is θi =
arctan (7 + 3(i − 1))/220)

No. of ring 1 2 3 4 5 6 7√
s = 91.2 GeV

σ0
i 63.077 24.728 12.170 6.8694 4.2517 2.8120 1.9552

(α(ti)/α(0))2 1.0425 1.0475 1.0516 1.0551 1.0582 1.0609 1.0634
1 + ∆ri 0.9426 0.9440 0.9412 0.9395 0.9240 0.8915 0.7982√

s = 189 GeV
σ0

i 14.685 5.7563 2.8324 1.5984 0.9889 0.6537 0.4542
(α(ti)/α(0))2 1.0554 1.0613 1.0661 1.0702 1.0736 1.0767 1.0794
1 + ∆ri 0.9377 0.9390 0.9360 0.9329 0.9165 0.8858 0.7898√

s = 200 GeV
σ0

i 13.115 5.1406 2.5295 1.4274 0.8831 0.5838 0.4057
(α(ti)/α(0))2 1.0565 1.0625 1.0673 1.0714 1.0749 1.0780 1.0807
1 + ∆ri 0.9376 0.9387 0.9352 0.9330 0.9158 0.8847 0.7896√

s = 1000 GeV
σ0

i 0.5248 0.2059 0.1014 0.0573 0.0356 0.0236 0.0165
(α(ti)/α(0))2 1.0921 1.0994 1.1050 1.1096 1.1135 1.1169 1.1199
1 + ∆ri 0.8622 0.8620 0.8590 0.8545 0.8398 0.8084 0.7205√

s = 3000 GeV
σ0

i 0.0590 0.0234 0.0117 0.0067 0.0042 0.0028 0.0020
(α(ti)/α(0))2 1.1192 1.1267 1.1325 1.1373 1.1414 1.1448 1.1479
1 + ∆ri 0.8467 0.8457 0.8422 0.8381 0.8253 0.7956 0.6975

Table 5. Table of fit results; the uncertainties δu0 and δu1 are
uncorrelated
√

s 91.2 GeV 189 GeV 200 GeV
u0 1.0573 ± 0.0005 1.0698 ± 0.0008 1.0703 ± 0.0007
u1 0.0242 ± 0.0028 0.0284 ± 0.0041 0.0318 ± 0.0038
〈−t〉 8.5 GeV2 36.6 GeV2 40.9 GeV2

obtained from a linear fit and contain the information of
both the data and the theory. Their interpretation is

n0 =
∫

Ldt · (1 + 2∆α(〈t〉)) ,

n1 =
∫

Ldt ·
(

d
d log(−t)

2∆α(t)
)

.

The dependence on the integrated luminosity is given ex-
plicitly; obviously one has ni = ui · ∫ Ldt by compar-
ing (8), (9) and (10).

In the ratio n1/n0 the dependence of the integrated
luminosity drops out:

d
d log(−t)

∆α =
n1

2n0
(1 + 2∆α(〈t〉)) .

The slope d∆α/d log(−t), the quantity of interest, is then
directly given by the ratio of the two experimentally mea-
sured quantities n0 and n1, namely n1/2n0. The contri-
bution of 2∆α(〈t〉) is small compared to 1 and can be

neglected. The accuracy of the slope is determined by
δn1/2n0, i.e. about 10% (see Table 5), which is far smaller
than the absolute value of n1/2n0.

On the other hand, n0 relates the integrated luminosity
to ∆α at the average value of t, i.e.∫

Ldt =
n0

1 + 2∆α(〈t〉) .

Making use of ∆α(〈t〉) as a priori knowledge, the fitted n0
can be used to derive the integrated luminosity, which is
the standard procedure. The statistical precision is given
by δn0/n0, which is on the order of 10−3.

In addition, the hadronic contribution to ∆α(t) (see
Fig. 2) may be deduced by subtracting the leptonic con-
tribution, which is theoretically precisely known. The ex-
traction of the hadronic contribution is only limited by the
experimental precision.

7 Conclusions

A novel approach to access directly and to measure the
running of α in the spacelike region is proposed. It consists
in analyzing small angle Bhabha scattering. Depending on
the particular angular detector coverage and on the energy
of the beams, it allows one to cover a sizeable range of the
t-variable.

The feasibility of the method has been put in evidence
by the use of a new tool SAMBHA to calculate the small
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angle Bhabha differential cross section with a theoretical
accuracy to better than 0.1%.

The information obtained in the t-channel can be com-
pared with the existing results of the s-channel measure-
ments. This represents a complementary approach which
is direct, transparent and based only on QED interactions
and furthermore free of some of the drawbacks inherent in
the s-channel methods.

The method outlined can be readily applied to the ex-
periments at LEP and SLC. It can also be exploited by fu-
ture e+e−-colliders as well as by existing lower energy ma-
chines.

An exceedingly precise measurement of the QED run-
ning coupling ∆α(t) for small values of t may be possibly
envisaged with a dedicated luminometer even at low ma-
chine energies.
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